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Abstract

Although Gaussian RBF kernels are one of the most often used kernels in modern machine
learning methods such as support vector machines (SVMs), little is known about the structure
of their reproducing kernel Hilbert spaces (RKHSs). In this work we give two distinct explicit
descriptions of the RKHSs corresponding to Gaussian RBF kernels and discuss some conse-
quences. Furthermore, we present an orthonormal system for these spaces. Finally we discuss
how our results can be used for analyzing the learning performance of SVMs.

Index Terms: Learning Theory, Support Vector Machines, Gaussian RBF Kernels

1 Introduction

In recent years support vector machines and related kernel-based algorithms (see e.g. [1] for an
introduction) have become the state-of-the-art methods for many machine learning problems. The
common feature of these methods is that they are based on an optimization problem over a re-
producing kernel Hilbert space (RKHS). If the underlying input space X of the machine learning
problem has a specific structure, e.g. text strings or DNA sequences, one often uses a RKHS which
is suitable to this structure (see e.g. [2] for a recent and thorough overview). If however X is a
subset of Rd then the commonly recommended choice are the RKHSs of the Gaussian RBF kernels
(see e.g. [3]). Although there has been substantial progress in understanding these RKHSs and
their role in the learning process (see e.g. [4] and [5]) some simple questions are still open. For
example, it is still unknown which functions are contained in these RKHSs, how the corresponding
norms can be computed, and how the RKHSs for different widths correlate to each other. The aim
of this paper is to answer these questions. In addition we discuss how our results can be used to
bound the approximation error function of SVMs which plays a crucial role in the analysis of the
learning performance of these learning algorithms.

The rest of the paper is organized as follows. In Section 2 we recall the definition and basic facts
on kernels and RKHSs. In Section 3 we present our main results and discuss their consequences.
Finally, Section 4 contains the proofs of the main theorems.
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2 Preliminaries

So far, in the machine learning literature only R-valued kernels have been considered. However,
to describe the reproducing kernel Hilbert space (RKHS) of Gaussian kernels we will use C-valued
kernels and therefore we recall the basic facts on RKHSs for both cases (see e.g. [6], [7], and [8]).
To this end let us first recall that for a complex number z = x + iy ∈ C, x, y ∈ R, its conjugate is
defined by z̄ := x− iy and its absolute value is |z| :=

√
zz̄ =

√
x2 + y2. In particular we have x̄ = x

and |x| =
√

x2 for all x ∈ R. Furthermore, we use the symbol K whenever we want to treat the
real and the complex case simultaneously. For example, a K-Hilbert space is a real Hilbert space
when K = R and a complex one when K = C. Recall, that in the latter case the inner product 〈., .〉
is sesqui-linear and Hermitian. This fact forces us to be a bit pedantic with the ordering in inner
products such as in the following definition.

Definition 2.1 Let X be a non-empty set. Then a function k : X ×X → K is called a kernel on
X if there exists a K-Hilbert space H and a map Φ : X → H such that for all x, x′ ∈ X we have

k(x, x′) = 〈Φ(x′),Φ(x)〉 . (1)

We call Φ a feature map and H a feature space of k.

Note that in the real case condition (1) can be replaced by the well-known equation k(x, x′) =
〈Φ(x),Φ(x′)〉. In the complex case however, 〈., .〉 is Hermitian and hence (1) is equivalent to
k(x, x′) = 〈Φ(x),Φ(x′)〉.

Given a kernel neither the feature map nor the feature space are uniquely determined. However,
one can always construct a canonical feature space, namely the RKHS. Let us now recall the basic
theory of these spaces.

Definition 2.2 Let X 6= ∅ and H be a Hilbert function space over X, i.e. a Hilbert space which
consists of functions mapping from X into K.

i) The space H is called a reproducing kernel Hilbert space (RKHS) over X if for all x ∈ X the
Dirac functional δx : H → K defined by δx(f) := f(x), f ∈ H, is continuous.

ii) A function k : X ×X → K is called a reproducing kernel of H if we have k(., x) ∈ H for all
x ∈ X and the reproducing property

f(x) = 〈f, k(., x)〉

holds for all f ∈ H and all x ∈ X.

Recall that reproducing kernel Hilbert spaces have the remarkable and important property that
norm convergence implies pointwise convergence. More precisely, let H be a RKHS, f ∈ H, and
(fn) ⊂ H be a sequence with ‖fn − f‖H → 0 for n →∞. Then for all x ∈ X we have

lim
n→∞

fn(x) = lim
n→∞

δx(fn) = δx(f) = f(x) . (2)

Furthermore, reproducing kernels are actually kernels in the sense of Definition 2.1 since Φ : X → H
defined by Φ(x) := k(., x) is a feature map of k. Moreover, the reproducing property says that each
Dirac functional can be represented by the reproducing kernel. Consequently, a Hilbert function
space H that has a reproducing kernel k is always a RKHS. The following theorem shows that
conversely, every RKHS has a (unique) reproducing kernel and that this kernel can be determined
by the Dirac functionals.
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Theorem 2.3 Let H be a RKHS over X. Then k : X × X → K defined by k(x, x′) := 〈δx, δx′〉,
x, x′ ∈ X, is the only reproducing kernel of H. Furthermore, if (ei)i∈I is an orthonormal basis
(ONB) of H then for all x, x′ ∈ X we have

k(x, x′) =
∑
i∈I

ei(x)ei(x′) , (3)

where the convergence is absolute.

For a proof of the above theorem we refer to [9, p. 42ff] and [8, p. 38ff]. Note that the ONB
in Theorem 2.3 is not necessarily countable. However, recall that RKHSs over separable metric
spaces having a continuous kernel are always separable and hence all their ONBs are countable. In
particular, the RKHSs of Gaussian RBF kernels always have countable ONBs.

Theorem 2.3 shows that a RKHS uniquely determines its reproducing kernel. The following
theorem (see [8, p. 20–23] for a proof) states that conversely every kernel has a unique RKHS.

Theorem 2.4 Let X 6= ∅ and k be a kernel over X with feature space H0 and feature map Φ0 :
X → H0. Then

H :=
{
〈w,Φ0(.)〉H0 : w ∈ H0

}
(4)

equipped with the norm

‖f‖H := inf
{
‖w‖H0 : w ∈ H0 with f = 〈w,Φ0(.)〉H0

}
(5)

is the only RKHS of k. In particular both definitions are independent of the choice of H0 and Φ0

and the operator V : H0 → H defined by

V w := 〈w,Φ0(.)〉H0 , w ∈ H0

is a metric surjection, i.e. V B̊H0 = B̊H , where B̊H0 and B̊H are the open unit balls of H0 and H,
respectively.

Finally, the following result proved in Section 4 relates the C-RKHS with the R-RKHS of a
real-valued kernel.

Corollary 2.5 Let k : X ×X → C be a kernel and H its corresponding C-RKHS. If we actually
have k(x, x′) ∈ R for all x, x′ ∈ X, then

HR :=
{
f : X → R

∣∣ ∃g ∈ H with Re g = f
}

equipped with the norm

‖f‖HR := inf
{
‖g‖H : g ∈ H with Re g = f

}
, f ∈ HR,

is the R-RKHS of the R-valued kernel k.

3 Results

Before we state our main results we need to recall the definition of the Gaussian RBF kernels. To
this end we always denote the j-th component of a complex vector z ∈ Cd by zj . Now let us write

kσ,Cd(z, z′) := exp
(
−σ2

d∑
j=1

(zj − z̄′j)
2
)
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for d ∈ N, σ > 0, and z, z′ ∈ Cd. Then it can be shown that kσ,Cd is a C-valued kernel on
Cd which we call the complex Gaussian RBF kernel with width σ. Furthermore, its restriction
kσ := (kσ,Cd)|Rd×Rd is an R-valued kernel, which we call the (real) Gaussian RBF kernel with width
σ. Obviously, this kernel satisfies

kσ(x, x′) = exp
(
−σ2‖x− x′‖2

2

)
for all x, x′ ∈ Rd, where ‖.‖2 denotes the Euclidian norm on Rd.

Besides the Gaussian RBF kernels we also have to introduce a family of spaces. To this end let
σ > 0 and d ∈ N. For a given holomorphic function f : Cd → C we define

‖f‖σ,Cd :=
(

2dσ2d

πd

∫
Cd

|f(z)|2eσ2
Pd

j=1(zj−z̄j)
2

dz

)1/2

,

where dz stands for the complex Lebesgue measure on Cd. Furthermore, we write

Hσ,Cd :=
{
f : Cd → C | f holomorphic and ‖f‖σ,Cd < ∞

}
.

Obviously, Hσ,Cd is a complex function space with pre-Hilbert norm ‖.‖σ,Cd . Let us now state a
lemma which will help us to show that Hσ,Cd is a RKHS. Its proof can be found in Section 4.

Lemma 3.1 For all σ > 0 and all compact subsets K ⊂ Cd there exists a constant cK,σ > 0 such
that for all z ∈ K and all f ∈ Hσ,Cd we have

|f(z)| ≤ cK,σ ‖f‖σ,Cd .

The above lemma shows that convergence in ‖.‖σ,Cd implies compact convergence, i.e. uniform
convergence on every compact subset. Using the well-known fact from complex analysis that a
compactly convergent sequence of holomorphic functions has a holomorphic limit (see e.g. [10,
Thm. I.1.9]) we then immediately obtain the announced

Corollary 3.2 The space Hσ,Cd equipped with norm ‖.‖σ,Cd is a RKHS for every σ > 0.

We have seen in Theorem 2.3 that the reproducing kernel of a RKHS is determined by an
arbitrary ONB of this RKHS. Therefore, to determine the reproducing kernel of Hσ,Cd our next
step is to find an orthonormal basis (ONB) of Hσ,Cd . To this end let us recall that the tensor
product f ⊗ g : X ×X → K of two functions f, g : X → K is defined by f ⊗ g(x, x′) := f(x)g(x′),
x, x′ ∈ X. Furthermore, the d-fold tensor product is defined analogously. Now we can formulate
the following theorem whose proof can be found in Section 4.

Theorem 3.3 For σ > 0 and n ∈ N0 := N ∪ {0} we define the function en : C → C by

en(z) :=

√
(2σ2)n

n!
zne−σ2z2

(6)

for all z ∈ C. Then the system (en1 ⊗ · · · ⊗ end
)n1,...,nd≥0 is an ONB of Hσ,Cd.

We have seen in Theorem 2.3 that an ONB of a RKHS can be used to determine the reproducing
kernel. In our case this yields the following theorem whose proof can again be found in Section 4.

Theorem 3.4 Let σ > 0 and d ∈ N. Then the complex Gaussian RBF kernel kσ,Cd is the repro-
ducing kernel of Hσ,Cd.
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With the help of Theorem 3.4 we can now obtain some interesting information on the RKHSs of
the real Gaussian RBF kernels kσ. To this end we denote the restriction of a function g : Rd → C
to a (not necessarily strict) subset X ⊂ Rd by g|X . Our first result then describes the RKHS of kσ

restricted to X ×X in terms of Hσ,Cd :

Corollary 3.5 For X ⊂ Rd and σ > 0 the RKHS of the real-valued Gaussian RBF kernel kσ on
X is

Hσ(X) :=
{
f : X → R | ∃g ∈ Hσ,Cd with Re g|X = f

}
and for f ∈ Hσ(X) the norm in Hσ(X) is given by

‖f‖σ := inf
{
‖g‖σ,Cd : g ∈ Hσ,Cd with Re g|X = f

}
.

The above corollary shows that every function in the RKHS Hσ(X) of the Gaussian RBF kernel
kσ originates from the complex RKHS Hσ,Cd which consists of entire functions. In particular, it
is easy to see that every f ∈ Hσ(X) can be represented by a power series which converges on Rd.
This observation suggests, that there may be an intimate relationship between Hσ(X) and Hσ(Rd)
if X contains an open set.

In order to investigate this conjecture we need some additional notations. For a multi-index
ν := (n1, . . . , nd) ∈ Nd

0 we write |v| := n1 + · · ·+ nd. Furthermore, for X ⊂ R and n ∈ N0 we define
eX
n : X → R by

eX
n (x) :=

√
(2σ2)n

n!
xne−σ2x2

, x ∈ X , (7)

i.e. we have eX
n = (en)|X = (Re en)|X , where en : C → C is an element of the ONB of Hσ,C defined

by (6). Furthermore, for a multi-index ν := (n1, . . . , nd) ∈ Nd
0 we write eX

ν := eX
n1
⊗ · · · ⊗ eX

nd
and

eν := en1⊗· · ·⊗end
. Given an x := (x1, . . . , xd) ∈ Rd we also adopt the notation xν := xn1

1 · . . . ·xnd
d .

Finally, recall that `2(Nd
0) denotes the set of all real -valued square-summable families, i.e.

`2(Nd
0) :=

{
(aν)ν∈Nd

0
: aν ∈ R for all ν ∈ Nd

0 and ‖(aν)‖2
2 :=

∑
ν∈Nd

0

a2
ν < ∞

}
.

With the help of these notations we can now show the following intermediate result:

Proposition 3.6 Let σ > 0, X ⊂ Rd be a subset with non-empty interior, i.e. X̊ 6= ∅, and
f ∈ Hσ(X). Then there exists a unique (bν) ∈ `2(Nd

0) with

f(x) =
∑
ν∈Nd

0

bνe
X
ν (x) , x ∈ X, (8)

where the convergence is absolute. Furthermore, for all functions g : Cd → C the following state-
ments are equivalent:

i) We have g ∈ Hσ,Cd and Re g|X = f .

ii) There exists an element (cν) ∈ `2(Nd
0) with

g =
∑
ν∈Nd

0

(bν + icν)eν . (9)

Finally, we have the identity ‖f‖2
Hσ(X) =

∑
ν∈Nd

0
b2
ν .
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With the help of the above proposition we can now establish our main result on Hσ(X) for input
spaces X having non-empty interior:

Theorem 3.7 Let σ > 0 and X ⊂ Rd be a subset with non-empty interior. Furthermore, for
f ∈ Hσ(X) having the representation (8) we define

f̂ :=
∑
ν∈Nd

0

bνeν .

Then the extension operatorˆ: Hσ(X) → Hσ,Cd defined by f 7→ f̂ satisfies

Re f̂|X = f

‖f̂‖H
σ,Cd

= ‖f‖Hσ(X)

for all f ∈ Hσ(X). Moreover, (eX
ν ) is an ONB of Hσ(X) and for f ∈ Hσ(X) having the represen-

tation (8) we have bν = 〈f, eX
ν 〉 for all ν ∈ Nd

0.

In the following we present some interesting consequences of the above theorem. We begin with:

Corollary 3.8 Let X ⊂ Rd be a subset with non-empty interior, σ > 0, and ˆ : Hσ(X) → Hσ,Cd be
the extension operator defined in Theorem 3.7. Then the extension operator I : Hσ(X) → Hσ(Rd)
defined by If := Re f̂|Rd, f ∈ Hσ(X), is an isometric isomorphism.

Roughly speaking the above corollary means that Hσ(Rd) does not contain “more” functions than
Hσ(X) if X has non-empty interior. Moreover, Corollary 3.8 in particular shows that Hσ(X1) and
Hσ(X2) are isometrically isomorphic via a simple extension-restriction mapping, whenever both
input spaces X1, X2 ⊂ Rd have non-empty interior. Besides these isometries, Theorem 3.7 also
yields the following interesting observation whose implications for learning theory are discussed at
the end of this section:

Corollary 3.9 Let σ > 0, X ⊂ Rd be a subset with non-empty interior, and f ∈ Hσ(X). If f is
constant on an open subset A of X then we actually have f(x) = 0 for all x ∈ X.

The above corollary states that the space Hσ(X) does not contain non-trivial constant functions
for typical input sets X, and consequently we have 1A 6∈ Hσ(X) for all open subsets A ⊂ X.

Remark 3.10 As observed by Saitoh [8, p. 79] one can also obtain Theorem 3.4 by the so-called
Bargmann spaces introduced in [11]. Indeed, [11] shows that these spaces are the RKHSs of the
exponential kernels (z, z′) 7→ exp(〈z, z̄′〉) on Cd, d ≥ 1, and therefore one can determine the RKHSs
of kσ,Cd by using the relation between the exponential and the Gaussian RBF kernels. Using further
results of [11] one can then derive Theorem 3.3 which played a key role in our analysis of the real
Gaussian RBF kernels kσ. However, this path requires more knowledge on both RKHS theory and
Bargmann spaces and therefore we decided to present more “elementary” proofs for Theorem 3.3
and Theorem 3.4.

It is well known that a kernel has many different feature spaces and feature maps. Let us now
present another feature space and feature map for kσ which add insight into the spaces Hσ(X).
To this end let L2(Rd) be the space of square-integrable functions on Rd equipped with the usual
norm ‖ · ‖2. Our first result shows that L2(Rd) is a feature space of kσ.
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Lemma 3.11 Let 0 < σ < ∞, X ⊂ Rd. We define Φσ : X → L2(Rd) by

Φσ(x) :=
(2σ)

d
2

π
d
4

e−2σ2‖x− · ‖22 , x ∈ X.

Then L2(Rd) is a feature space and Φσ : X → L2(Rd) is a feature map of kσ.

With the help of the above feature space and map we will now present a representation of the
inclusion id : Hσ(X) → Hτ (X). To this end recall (see e.g. [12]) that for t > 0 the Gauss-Weierstraß
integral operator Wt : L2(Rd) → L2(Rd) is defined by

Wtg(x) := (4πt)−
d
2

∫
Rd

e−
‖x−y‖22

4t g(y)dy

for all g ∈ L2(Rd), x ∈ Rd. Now we can formulate the announced result.

Proposition 3.12 For 0 < σ < τ < ∞ we define δ := 1
8

(
1
σ2 − 1

τ2

)
. Furthermore, let X ⊂ Rd and

Wδ be as above. Then we obtain a commutative diagram

Hσ(X) Hτ (X)

L2(Rd) L2(Rd)

-

66 66

-

id

Vσ Vτ

( τ
σ )

d
2 Wδ

where the vertical maps Vσ and Vτ are the metric surjections of Theorem 2.4.

Since Vσ of the above proposition is a metric surjection we obtain ‖id ◦ Vσ‖ = ‖id‖, and hence
the commutativity of the diagram implies

‖id : Hσ(X) → Hτ (X)‖ = ‖id ◦ Vσ‖ =
( τ

σ

) d
2 ‖Vτ ◦Wδ‖ ≤

( τ

σ

) d
2 ‖Wδ‖.

Moreover, it is well known (see e.g. [12]) that ‖Wδ‖ ≤ 1. Therefore we have established the following
corollary.

Corollary 3.13 Let X ⊂ Rd and 0 < σ ≤ τ < ∞. Then we have

‖id : Hσ(X) → Hτ (X)‖ ≤
( τ

σ

) d
2
.

Our last result which is proved in Section 4 shows that for sufficiently large X the metric surjec-
tions Vσ : L2(Rd) → Hσ(X) are isometric isomorphisms, and consequently id : Hσ(X) → Hτ (X)
shares many important properties with Wδ.

Corollary 3.14 Let X ⊂ Rd contain a non-empty open subset. Then Vσ : L2(Rd) → Hσ(X) is an
isometric isomorphism for all σ > 0. In addition, for all 0 < σ < τ < ∞ and δ := 1

8

(
1
σ2 − 1

τ2

)
we
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have the following commutative diagram

Hσ(X) Hτ (X)

L2(Rd) L2(Rd)

-

?

6

-

id

V −1
σ

Vτ

( τ
σ )

d
2 Wδ

and consequently the following statements are true:

i) id : Hσ(X) → Hτ (X) is not compact.

ii) id : Hσ(X) → Hτ (X) is not surjective, i.e. Hσ(X) ( Hτ (X).

iii) The estimate of Corollary 3.13 is exact, i.e. we have

‖id : Hσ(X) → Hτ (X)‖ =
( τ

σ

) d
2
.

Finally, let us briefly discuss how the above result can be used in the analysis of support vector ma-
chines (see [1] for these learning algorithms). For the sake of simplicity we only consider the support
vector machines (SVMs) with Gaussian RBF kernels and with hinge loss L(y, t) := max{0, 1− yt},
y ∈ Y := {−1, 1}, t ∈ R, which are used for binary classification problems (see [13] for an introduc-
tion to classification). Moreover, let X ⊂ Rd be as in the above corollary and P be a probability
measure on X × Y . Then for a measurable f : X → R we define the L-risk by

RL,P (f) :=
∫

X×Y
L(y, f(x))dP (x, y) .

Furthermore, the minimal L-risk is denoted by R∗
L,P := inff RL,P (f), where the infimum runs

over all measurable functions. Now, it has recently been discovered that for analyzing the learning
performance of SVMs the behaviour of the approximation error function

aσ(λ) := inf
f∈Hσ(X)

λ‖f‖2
σ,X +RL,P (f)−R∗

L,P (10)

for λ → 0 plays an important role. Indeed, aσ(λ) → 0 for λ → 0 was used in [14] to show that
SVMs can learn in the sense of universal consistency (see [13] for an introduction to this notion of
learning). Furthermore, [15], [16] and [5] established small bounds on aσ(λ) for certain P , σ and λ
which were used for stronger guarantees on the learning performance of SVMs. Unfortunately, the
techniques used are rather involved and in particular it is completely open whether the obtained
bounds are sharp. Now, observe that Corollary 3.14 shows

aσ(λ) = inf
g∈L2(Rd)

λ‖g‖2
L2(Rd) +RL,P (Vσg)−R∗

L,P , (11)

which may significantly help in understanding the behaviour of aσ(λ). Indeed, in order to establish
a small bound of aσ(λ) via (10) one has to simultaneously control both the shape and the ‖ . ‖σ,X -
norm of certain f ∈ Hσ(X) which is rather challenging because of the analyticity of these f . In
contrast to this, we see that when considering (11) the task is to simultaneously control ‖g‖L2(Rd)
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and the shape of Vσg for suitable g ∈ L2(Rd). Obviously, the first term is easy to determine for
many g and the second term can be investigated by e.g. the well-established theory of the Gauss-
Weierstraß integral operator, or more generally, convolution operators. Remarkably, this approach
was already used implicitly in [5], however arising technical difficulties in [5] make it hard to see
the simple structure there. We hope that by outlining (11) and its usability the existing bounds on
aσ(λ) can be further improved.

Moreover, note that the results established in this work also give a negative result on the ap-
proximation error function for a large class of distributions and fixed σ. Indeed, if we write
η(x) := P (y = 1|x), x ∈ X, and assume e.g. that the set {x : 1/2 < η(x) < 1} has a non-
empty interior then Corollary 3.9 shows that the infimum of RL,P (.) over Hσ(X) is not attained
since every possible minimizer f∗ must satisfy f∗(x) = 1 for all x with 1/2 < η(x) < 1. With the
help of [17] we then see that there exists no constant cσ with aσ(λ) ≤ cσλ for all (small) λ > 0. In
particular this shows that for such P the recent methods (see e.g. [15, 17]) for establishing learning
rates can only yield learning rates converging to 0 slower than the regularization sequence (λn).

Finally, it is worth mentioning that the injectivity of the integral operator Wt has been recently
used in [18] to establish the relation

inf
f∈Hσ(X)

RL,P (f) = R∗
L,P

for almost all commonly used convex loss functions and all distributions P on Rd×R. In particular,
this equality allows consistency results in the spirit of [14] for unbounded input spaces X ⊂ Rd which
were previously not possible due to the “non-universality” of kσ on Rd.

4 Proofs

Proof of Corollary 2.5: It is easy to check that H0 := H equipped with the inner product

〈f, f ′〉H0 := Re〈f, f ′〉H , f, f ′ ∈ H0,

is an R-feature space of the R-valued kernel k. Moreover, for f ∈ H0 and x ∈ X we have

f(x) = 〈f,Φ(x)〉H = Re〈f,Φ(x)〉H + i Im〈f,Φ(x)〉H = 〈f,Φ(x)〉H0 + i Im f(x),

i.e. we have found 〈f,Φ(x)〉H0 = Re f(x). Now, the assertion follows from Theorem 2.4.

For the proof of Lemma 3.1 we need the following technical lemma.

Lemma 4.1 For all d ∈ N, all holomorphic functions f : Cd → C, all r1, . . . , rd > 0, and all
z ∈ Cd we have

|f(z)|2 ≤ 1
(2π)d

∫ 2π

0
· · ·

∫ 2π

0

∣∣f(z1 + r1e
iθ1 , . . . , zd + rde

iθd)
∣∣2dθ1 · · · dθd . (12)

Proof: We proceed by induction over d. For d = 1 the assertion follows from Hardy’s convexity
theorem (see e.g. [19, p. 9]) which states that the function

r 7→ 1
2π

∫ 2π

0
|f(z + reiθ)|2dθ

is non-decreasing on [0,∞).
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Now let us suppose that we have already shown the assertion for d ∈ N. Let f : Cd+1 → C be a
holomorphic function, and choose r1, . . . , rd+1 > 0. Since for fixed (z1, . . . , zd) ∈ Cd the function
zd+1 7→ f(z1, . . . , zd, zd+1) is holomorphic by the induction hypothesis, we obtain

|f(z1, . . . , zd+1)|2 ≤
1
2π

∫ 2π

0
|f(z1, . . . , zd, zd+1 + rd+1e

iθd+1)|2dθd+1 .

Now applying the induction hypothesis to the holomorphic function

(z1, . . . , zd) 7→ f(z1, . . . , zd, zd+1 + rd+1e
iθd+1)

on Cd gives the assertion for d + 1.

Proof of Lemma 3.1: Let us define c := max{e−σ2
Pd

j=1(zj−z̄j)
2

: (z1, . . . , zd) ∈ K + (BC)d},
where BC denotes the closed unit ball of C. Now, by Lemma 4.1 we have

2dr1 · · · rd|f(z)|2 ≤ r1 · · · rd

πd

∫ 2π

0
· · ·

∫ 2π

0

∣∣f(z1 + r1e
iθ1 , . . . , zd + rde

iθd)
∣∣2dθ1 · · · dθd

and integrating this inequality with respect to r = (r1, . . . , rd) over [0, 1]d then yields

|f(z)|2 ≤ 1
πd

∫
z+(BC)d

|f(z′)|2dz′

≤ c

πd

∫
z+(BC)d

|f(z′)|2eσ2
Pd

j=1(zj−z̄j)
2

dz′

≤ c

(2σ2)d
‖f‖2

σ,Cd .

For the proof of Theorem 3.3 we need the following technical lemma.

Lemma 4.2 For all n, m ∈ N0 and all σ > 0 we have∫
C

zn(z̄)me−2σ2zz̄dz =

{
π n!

(2σ2)n+1 if n = m

0 otherwise.

Proof: Let us first consider the case n = m. Then we have∫
C

zn(z̄)me−2σ2zz̄dz =
∫ ∞

0

∫ 2π

0
r2ne−2σ2r2

dθ r dr

= 2π

∫ ∞

0
r2n+1e−2σ2r2

dr

=
π

(2σ2)n+1

∫ ∞

0
tne−tdt

=
π n!

(2σ2)n+1
.

Now let us assume n 6= m. Then we obtain∫
C

zn(z̄)me−2σ2zz̄dz =
∫ ∞

0
r

∫ 2π

0
rn+mei(n−m)θe−2σ2r2

dθdr = 0 .

10



Proof of Theorem 3.3: In order to avoid cumbersome technical notations that hide the structure
of the proof we first consider the case d = 1.

Let us show that (en)n≥0 is an orthonormal system. To this end for n, m ∈ N0, and z ∈ C we
observe

en(z)em(z)eσ2(z−z̄)2 =

√
(2σ2)n+m

n!m!
zn(z̄)me−σ2z2−σ2z̄2

eσ2(z−z̄)2 =

√
(2σ2)n+m

n!m!
zn(z̄)me−2σ2zz̄ .

Therefore for n, m ≥ 0 we obtain

〈en, em〉 =
2σ2

π

∫
C

en(z)em(z)eσ2(z−z̄)2dz =
2σ2

π
·
√

(2σ2)n+m

n!m!

∫
C

zn(z̄)me−2σ2zz̄dz =

{
1 if n = m

0 otherwise

by Lemma 4.2. This shows that (en)n≥0 is indeed an orthonormal system.

Now, let us show that this system is also complete. To this end let f ∈ Hσ(C). Then z 7→ eσ2z2
f(z)

is an entire function, and therefore there exists a sequence (an) ⊂ C such that

f(z) =
∞∑

n=0

anzne−σ2z2
=

∞∑
n=0

an

√
n!

(2σ2)n
en(z) (13)

for all z ∈ C. Obviously, it suffices to show that the above convergence also holds with respect
to ‖.‖σ,C. To prove this we first recall from complex analysis that the series in (13) converges
absolutely and compactly. Therefore for n ≥ 0 Lemma 4.2 yields

〈f, en〉 =
2σ2

π

∫
C

f(z)en(z)eσ2(z−z̄)2dz

=
2σ2

π

∞∑
m=0

am

∫
C

zme−σ2z2
en(z)eσ2(z−z̄)2dz

=
2σ2

π

√
(2σ2)n

n!

∞∑
m=0

am

∫
C

zm(z̄)ne−2σ2zz̄dz

= an

√
n!

(2σ2)n
. (14)

Furthermore, since (en) is an orthonormal system we have (〈f, en〉) ∈ `2 by Bessel’s inequality.
Using again that (en) is an orthonormal system in Hσ(C) we hence find a function g ∈ Hσ(C) with
g =

∑∞
n=0〈f, en〉en, where the convergence takes place in Hσ(C). Now, using (13), (14), and the

fact that norm convergence in RKHSs implies point-wise convergence we find g = f , i.e. the series
in (13) converges with respect to ‖.‖σ,C.

Now, let us briefly treat the general, d-dimensional case. In this case a simple calculation shows

〈en1 ⊗ · · · ⊗ end
, em1 ⊗ · · · ⊗ emd

〉H
σ,Cd

=
d∏

j=1

〈enj , emj 〉Hσ(C) ,

and hence we find the orthonormality of (en1 ⊗ · · · ⊗ end
)n1,...,nd≥0. In order to check that this

orthonormal system is complete let us fix an f ∈ Hσ,Cd . Then z 7→ f(z) exp(σ2
∑d

i=1 z2
i ) is an

11



entire function, and hence [10, Thm. I.1.18] shows there there exist an1,...,nd
∈ C, (n1, . . . , nd) ∈ Nd

0,
such that

f(z) =
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

zni
i e−σ2z2

i =
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

√
ni!

(2σ2)ni
eni(z)

for all z = (z1, . . . , zd) ∈ Cd. From this we easily derive 〈f, en1⊗· · ·⊗end
〉 = an1,...,nd

∏d
i=1

√
ni!

(2σ2)ni
,

and hence we obtain the completeness as in the 1-dimensional case.

Proof of Theorem 3.4: Let k be the reproducing kernel of Hσ,Cd . Then using the ONB of
Theorem 3.3 and the Taylor series expansion of the exponential function we obtain

k(z, z′) =
∞∑

n1,...,nd=0

en1 ⊗ · · · ⊗ end
(z)en1 ⊗ · · · ⊗ end

(z′)

=
∞∑

n1,...,nd=0

d∏
j=1

(2σ2)nj

nj !
(zz̄′)nje−σ2z2

j−σ2(z̄′j)
2

=
d∏

j=1

∞∑
nj=0

(2σ2)nj

nj !
(zz̄′)nje−σ2z2

j−σ2(z̄′j)
2

=
d∏

j=1

e−σ2z2
j−σ2(z̄′j)

2+2σ2zj z̄′j

= e−σ2
Pd

j=1(zj−z̄′j)
2

,

which shows the assertion.

Proof of Corollary 3.5: The assertion directly follows from Theorem 3.4, the definition of kσ,Cd ,
and Corollary 2.5.

Proof of Proposition 3.6: i) ⇒ ii). Let us fix a g ∈ Hσ,Cd with Re g|X = f . Since (eν) is an
ONB of Hσ,Cd we then have

g =
∑
ν∈Nd

0

〈g, eν〉 eν ,

where the convergence is with respect to Hσ,Cd . In addition, recall that the family of Fourier
coefficients is square-summable and satisfies Parseval’s identity

‖g‖2
H

σ,Cd
=

∑
ν∈Nd

0

∣∣〈g, eν〉
∣∣2 .

Since convergence in Hσ,Cd implies pointwise convergence we then obtain

f(x) = Re g|X(x) = Re
( ∑

ν∈Nd
0

〈g, eν〉eν(x)
)

=
∑
ν∈Nd

0

Re
(
〈g, eν〉

)
eX
ν (x) , x ∈ X,

where in the last step we used eν(x) ∈ R for x ∈ X. In order to show ii) it consequently remains
to show that bν := Re〈g, eν〉 only depends on f but not on g. To this end let g̃ ∈ Hσ,Cd be another
function with Re g̃|X = f . By repeating the above argument for g̃ we then find

f(x) =
∑
ν∈Nd

0

Re
(
〈g̃, eν〉

)
eX
ν (x) , x ∈ X.

12



Using the definition (7) we then obtain∑
ν∈Nd

0

Re
(
〈g̃, eν〉

)
aν xν =

∑
ν∈Nd

0

Re
(
〈g, eν〉

)
aν xν , x ∈ X,

where aν := an1 · . . . · and
and an :=

(
2nσ2n

n!

)1/2. Since X has non-empty interior the identity
theorem for power series and aν 6= 0 then give Re〈g̃, eν〉 = Re〈g, eν〉 for all ν ∈ Nd

0. This shows
both (8) and (9). Finally, Corollary 3.5 and Parseval’s identity give

‖f‖2
Hσ(X) = inf

{
‖g‖σ,Cd : g ∈ Hσ,Cd with Re g|X = f

}
= inf

{ ∑
ν∈Nd

0

b2
ν + c2

ν : (cν) ∈ `2(Nd
0)

}
=

∑
ν∈Nd

0

b2
ν .

ii) ⇒ i). Since (bν) ∈ `2(Nd
0) and (cν) ∈ `2(Nd

0) imply
(
|bν + icν |

)
∈ `2(Nd

0) we have g ∈ Hσ,Cd .
Furthermore, Re g|X = f follows from

Re g(x) = Re
∑
ν∈Nd

0

(bν + icν)eν(x) =
∑
ν∈Nd

0

bνe
X
ν (x) = f(x) , x ∈ X.

Proof of Theorem 3.7: By (8) the extension operator is well-defined. The identities then follow
from Proposition 3.6 and Parseval’s identity. Moreover, the extension operator is obviously R-linear
and satisfies êX

ν = eν for all ν ∈ Nd
0. Consequently, we obtain

‖eX
ν1
± eX

ν2
‖Hσ(X) = ‖êX

ν1
± êX

ν2
‖H

σ,Cd
= ‖eν1 ± eν2‖H

σ,Cd

for ν1, ν2 ∈ Nd
0. Using the polarization identity we then see that (eX

ν ) is an ONS in Hσ(X). To see
that it actually is an ONB we fix an f ∈ Hσ(X). Furthermore, let (bν) ∈ `2(Nd

0) be the family that
satisfies (8). Then

f̃ :=
∑
ν∈Nd

0

bνe
X
ν

converges in Hσ(X). Since convergence in Hσ(X) implies pointwise convergence, (8) then yields
f̃(x) = f(x) for all x ∈ X. Consequently, (eX

ν ) is an ONB of Hσ(X). Finally, the identity
bν = 〈f, eX

ν 〉, ν ∈ Nd
0, follows from the fact that the representation of f by (eX

ν ) is unique.

Proof of Corollary 3.8: For f ∈ Hσ(X) we have (〈f, eX
ν 〉) ∈ `2(Nd

0) and hence

f̃ :=
∑
ν∈Nd

0

〈f, eX
ν 〉eRd

ν

is a well-defined element in Hσ(Rd). Moreover, for ν ∈ Nd
0 we have (Re eν)|Rd = eRd

ν and 〈f, eX
ν 〉 ∈

R, and hence we find If = f̃ . Furthermore, ‖f‖Hσ(X) = ‖If‖Hσ(Rd) immediately follows from
Parseval’s identity. Consequently, I is isometric, linear, and injective. The surjectivity finally
follows from the fact that given an f̃ ∈ Hσ(Rd) the function

f :=
∑
ν∈Nd

0

〈
f, eRd

ν

〉
eX
ν

obviously satisfies f ∈ Hσ(X) and If = f̃ .
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Proof of Corollary 3.9: Let c ∈ R be a constant with f(x) = c for all x ∈ A. Let us define
an := ( (2σ2)n

n! )1/2 for all n ∈ N0. Furthermore, for ν := (n1, . . . , nd) ∈ Nd
0 we write bν := 〈f, eX

ν 〉 and
aν := an1 · . . . · and

. For x := (x1, . . . , xd) ∈ A the definition (7) and the representation (8) then
yield

c exp
(
σ2

d∑
j=1

x2
j

)
= f(x) exp

(
σ2

d∑
j=1

x2
j

)
=

∑
ν∈Nd

0

bνaνx
ν . (15)

Moreover, for x ∈ Rd a simple calculation shows

exp
(
σ2

d∑
j=1

x2
j

)
=

d∏
j=1

eσ2x2
j =

d∏
j=1

( ∞∑
nj=0

σ2njx
2nj

j

nj !

)
=

∞∑
n1,...,nd=0

d∏
j=1

σ2njx
2nj

j

nj !
.

Using (15) and the identity theorem for power series we hence obtain

bν =

c
d∏

j=1

√
(2nj)!

nj !
2−nj if ν = (2n1, . . . , 2nd) for some (n1, . . . , nd) ∈ Nd

0

0 otherwise .

Consequently, Parseval’s identy yields

‖f‖2
Hσ(X) =

∑
ν∈Nd

0

b2
ν =

∞∑
n1,...,nd=0

c2
d∏

j=1

(2nj)!
(nj !)2

2−2nj =
( ∞∑

n=0

c2/d (2n)!
(n!)2

2−2n
)d

.

Let us write αn := (2n)!
(n!)2

2−2n for n ∈ N0. By an easy calculation we then obtain

αn+1

αn
=

(
2(n + 1)

)
! (n!)2 2n

(2n)!
(
(n + 1)!

)2 22(n+1)
=

(2n + 1)(2n + 2)
4(n + 1)2

=
2n + 1
2n + 2

≥ n

n + 1

for all n ≥ 1. In other words, (nαn) is a increasing, positive sequence. Consequently we have
αn ≥ α1

n for all n ≥ 1, and hence we find
∑∞

n=0 αn = ∞. Therefore, ‖f‖2
Hσ(X) < ∞ implies c = 0,

and thus we have bν = 0 for all ν ∈ Nd
0. This shows f = 0.

Proof of Lemma 3.11: We begin by collecting some well known facts about manipulating Gaus-
sians that are useful in proving Lemma 3.11, Theorem 4.3, and Corollary 3.14. First it is well known
that for all t > 0 and x ∈ Rd we have∫

Rd

e−
‖y−x‖22

t dy = (πt)
d
2 . (16)

Second, an elementary calculation shows

‖y − x‖2
2 + α‖y − x′‖2

2 =
α

1 + α
‖x− x′‖2

2 + (1 + α)
∥∥∥y − x + αx′

1 + α

∥∥∥2

2
(17)

for all α ≥ 0 and all y, x, x′ ∈ Rd. Now by using (16) and setting α := 1 in (17) we obtain

〈Φσ(x),Φσ(x′)〉L2(Rd) =
(2σ)d

π
d
2

∫
Rd

e−2σ2‖x−z‖22e−2σ2‖x′−z‖22dz

=
(2σ)d

π
d
2

e−σ2‖x−x′‖22
∫

Rd

e−4σ2‖z−x+x′
2

‖22dz

=
(2σ)d

π
d
2

· e−σ2‖x−x′‖22
( π

4σ2

) d
2

= kσ(x, x′).
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Therefore Φσ is a feature map and L2(Rd) is a feature space of kσ.

Proof of Proposition 3.12: Theorem 2.4 shows that we can compute the metric surjection Vσ :
L2(Rd) → Hσ(X) by

Vσg(x) = 〈g,Φσ(x)〉L2(Rd) =
(2σ)

d
2

π
d
4

∫
Rd

e−2σ2‖x−y‖22g(y)dy , g ∈ L2(Rd), x ∈ X ,

where Φσ is the feature map defined in Lemma 3.11. Note, that in this formula the computation of
Vσ is independent of the chosen domain X. Therefore let us first consider the case X = Rd. Then
the relationships

Vσ =
( π

σ2

) d
4
W 1

8σ2
and W 1

8τ2
=

(τ2

π

) d
4
Vτ

are easily derived. Furthermore it is well known (see e.g. Hille and Phillips [12]) that the Gauss-
Weierstraß integral operator corresponds to a solution of the heat equation and so satisfies the
semigroup identity

Ws = WtWs−t

for all 0 < t < s. Combining this with the relations between the operators Wt and Vσ we obtain

Vσ =
( π

σ2

) d
4
W 1

8σ2
=

( π

σ2

) d
4
W 1

8τ2
W 1

8

“
1

σ2−
1

τ2

” =
( τ

σ

) d
2
VτW 1

8

“
1

σ2−
1

τ2

” (18)

for all 0 < σ < τ , and thus the diagram commutes in the case of X = Rd. The general case X ⊂ Rd

follows from (18) using the fact that the computation of Vσ is independent of X.

For the proof of Corollary 3.14 we have to recall the following important theorem which for
completeness is proved below.

Theorem 4.3 The Gauss-Weierstraß integral operator Wt : L2(Rd) → L2(Rd) is not compact for
all t > 0.

Proof: Let Zd be the lattice of integral vectors in Rd. For n = (n1, ..., nd) ∈ Zd and s > 0 we
define

g(s)
n (x) := (2πs)−

d
4 e−

‖x−n‖2
4s , x ∈ Rd.

Then (16) shows ‖g(s)
n ‖2

2 = 1, i.e. g
(s)
n is contained in the closed unit ball BL2(Rd) of L2(Rd).

Furthermore from (16) and (17) we infer

Wtg
(s)
n (x) = (4πt)−

d
2 (2πs)−

d
4

∫
Rd

e−
‖x−y‖22

4t e−
‖y−n‖22

4s dy = (2πs)−
d
4

( s

s + t

) d
2
e
− ‖x−n‖22

4(s+t) .

Consequently, by utilizing (16) and (17) yet again, we obtain for n, m ∈ Zd that

〈Wtg
(s)
n ,Wtg

(s)
m 〉 = (2πs)−

d
2

( s

s + t

)d
∫

Rd

e
− ‖y−n‖22

4(s+t) e
− ‖y−m‖22

4(s+t) dy =
( s

s + t

) d
2
e
− ‖m−n‖22

8(s+t) . (19)

Therefore for n 6= m ∈ Zd and s := t we have

‖Wtg
(t)
n −Wtg

(t)
m ‖2

2 = ‖Wtg
(t)
n ‖2

2 + ‖Wtg
(t)
m ‖2

2 − 2〈Wtg
(t)
n ,Wtg

(t)
m 〉 = 21− d

2

(
1− e−

‖m−n‖22
16t

)
≥ 21− d

2 (1− e−
1

16t ),

and hence {Wtg
(t)
n : n ∈ Zd} ⊂ WtBL2(Rd) is not precompact. This implies the assertion.
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Proof of Corollary 3.14: Let us first show that Vσ is an isometric isomorphism. In view of
Theorem 2.4 it suffices to prove that Vσ is injective. To this end let g ∈ L2(Rd) with Vσg = 0. Since
X contains an open subset the analytic extension V̂σg : Rd → R of Vσg also satisfies V̂σg = 0. Now,
the unique continuation property of Itô and Yamabe [20] for the heat equation implies g = 0, and
hence Vσ is injective by its linearity. Obviously, the asserted diagram is an immediate consequence
of the injectivity of Vσ and the diagram in Proposition 3.12.

Now the remaining assertions can be shown by the established diagram. Indeed, i) follows from
Theorem 4.3. Beckner’s [21] work on sharp Young’s inequalities implies ‖Wδ‖ = 1 which establishes
iii) but the result can be easily obtained from (19). Indeed, the latter implies ‖Wδgn‖2 = ( s

s+t)
d
4

and we obtain iii) by letting s → ∞. Finally, by considering the case X = Rd we note that for
t > 0 and τ := 1√

8t
we have Wt = (8πt)−

d
4 Vτ , i.e. we have the following commutative diagram

L2(Rd) L2(Rd)

Hτ (Rd)

-

@
@

@
@@R �

�
�

���

Wt

Vτ (8πt)−
d
4 id

Now, since Hτ (Rd) consists of analytic functions we obviously have Hτ (Rd) ( L2(Rd) and hence
Wt is not surjective.
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